
Supplementary Text 1:

Asymptotic calculation of cause-specific mortality

accuracy under random allocation

Abraham D. Flaxman

1 Background

This appendix accompanies the paper “Measuring causes of death in popula-
tions: a new metric that corrects cause-specific mortality fractions for chance”
by Flaxman et al, which proposes an approach to chance-correcting the cause-
specific mortality fraction (CSMF) accuracy used in measuring the predictive
accuracy of verbal autopsy analysis methods at the population level.

In the main paper, the proposed chance-correction formula is based on the
CSMF accuracy of the Random Allocation baseline approach, which labels ver-
bal autopsy interviews with an underlying cause of death selected uniformly at
random from all causes on a predefined, mutually exclusive, collectively exhaus-
tive, cause list.

The purpose of this appendix is to provide an intuitive justification and
rigorous mathematical derivation of the asymptotic CSMF accuracy of Random
Allocation, as the length of the cause list, J , and number of examples, N , grow
large.

2 Mathematical formulation of the CSMF Ac-
curacy of Random Allocation

The CSMF Accuracy formula from the main text is the following:

CSMF Accuracy = 1−

∑J
j=1

∣∣∣CSMFtrue
j − CSMFpred

j

∣∣∣
2
(
1−minj

(
CSMFtrue

j

)) .

This is not mathematically precise, however; as stressed in the main text, it is es-
sential to average CSMF Accuracy over true CSMFs that have been randomly re-
sampled. This can be represented mathematically as E[CSMF Accuracy], where
the expectation is taken over: (1) vector

(
CSMFtrue

1 ,CSMFtrue
2 , . . . ,CSMFtrue

J

)
drawn from an uninformative Dirichlet distribution; (2) a test dataset with N
examples where the underlying cause follows the CSMF distribution from (1);
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and (3) the random choices (if any) in the prediction algorithm used to generate

the CSMFpred
j values.

In order to calculate the asymptotic value of this expectation, as J and N
grow large, it is useful to introduce some additional notation. For fixed J and N ,
let X1, X2, . . . , XJ be independent, exponentially distributed random variables,
with parameter 1, i.e.

Pr[Xj ≤ x] = (1− e−x)1[x ≥ 0],

where 1[·] is an indicator function equal to one if the condition in the square
brackets holds, and zero otherwise.

The uninformative Dirichlet distribution on
(
CSMFtrue

1 , . . . ,CSMFtrue
J

)
can

then be represented by

CSMFtrue
j =

Xj∑J
j′=1 Xj′

for j = 1, . . . , J.

Under Random Allocation, the predicted CSMFs for different causes are de-
pendent random variables, but in our analysis it will only be necessary to work
with the marginal distribution of CSMFpred

j for a single j at a time, and this
can be expressed in terms of a binomial distribution. Let Yj be a binomially dis-
tributed random variable, with N trials and success probability 1/J , as defined
by the equation

Pr [Yj = k] =

(
N

k

)(
1

J

)k (
1− 1

J

)N−k

.

The marginal distribution of CSMFpred
j is then given by CSMFpred

j = Yj/N .
Putting this notation all together, we have that for J causes and N VAs,

the CSMF Accuracy for Random Allocation is

E [CSMF Accuracy] = E

1−

J∑
j=1

∣∣∣∣ Xj∑J
j′=1

Xj′
− Yj

N

∣∣∣∣
2
(
1−minj

(
CSMFtrue

j

))
 .

3 Intuitive, but non-rigorous, derivation of the
CSMF Accuracy of Random Allocation

With the mathematical formulation of the CSMF Accuracy of Random Alloca-
tion from the previous section in hand, it is now possible to provide an intuitively
convincing, but mathematically non-rigorous, derivation of its asymptotic value.

First, we note that
∑J

j=1 CSMFtrue
j = 1 and therefore minj CSMFtrue

j ≤ 1/J .

Since we also have CSMFtrue
j ≥ 0, the denominator on the right-hand side of

2



the CSMF Accuracy formula can be approximated by the following when J is
large:

2

(
1−min

j
CSMFtrue

j

)
≈ 2.

Following this approximation, linearity of expectations gives

E[CSMF Accuracy] ≈ 1−

J∑
j=1

E

[∣∣∣∣ Xj∑J
j′=1

Xj′
− Yj

N

∣∣∣∣]
2

Moving our attention now to the expectation on the right-hand side of the
above equation, we make two more approximations: For sufficiently large J ,
the sum

∑J
j′=1 Xj′ ≈ J ; and, for sufficiently large N , the random variable

CSMFpred
j = Yj/N ≈ 1

J .
These approximations allow us to simplify the expectation in the numerator

of the previous approximation to

E

[∣∣∣∣∣ Xj∑J
j′=1 Xj′

− Yj

N

∣∣∣∣∣
]
≈ E

[∣∣∣∣Xj

J
− 1

J

∣∣∣∣]
=

1

J
E [|Xj − 1|] .

Following this simplification, the only remaning piece of the puzzle is to
calculate the expectation of the absolute value of Xj − 1. The following lemma
gives the result:

Lemma 3.1. For Xj an exponentially distributed random variable with param-
eter 1,

E [|Xj − 1|] = 2/e.

We do not prove this here, but it can be shown by the interested reader via
two definite integrals.

Putting these pieces together now yields the intended result, approximately:

E[CSMF Accuracy] ≈ 1−

J∑
j=1

1
J E [|Xj − 1|]

2

= 1− 1

2

J∑
j=1

1

J
(2/e)

= 1− 1/e.

4 Rigorous derivation

To convert the intuitive approximation in the previous section into a mathemat-
ically rigorous proof requires a careful accounting of how just imprecise were the
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above approximations. For example, as already mentioned,

0 ≤ min
j

(
CSMFtrue

j

)
≤ 1/J.

These rigorous inequalities can be used in place of the first approximate equality
of the previous section, yielding

E[CSMF Accuracy] ≥ 1−

J∑
j=1

E

[∣∣∣∣ Xj∑J
j′=1

Xj′
− Yj

N

∣∣∣∣]
2(1− 1/J)

;

E[CSMF Accuracy] ≤ 1−

J∑
j=1

E

[∣∣∣∣ Xj∑J
j′=1

Xj′
− Yj

N

∣∣∣∣]
2

.

To similarly address the other approximations, we now focus our attention on

E

[∣∣∣∣ Xj∑J
j′=1

Xj′
− Yj

N

∣∣∣∣] for a specific, fixed j. Our approach will be to define three

events that occur with probability suitably close to one that we can calculate
or bound the expectation in all cases. Let A denote the event that Yj/N is not
too far from its mean,

A =
{
Yj = N/J ± 2 logN

√
N
}
.

Similarly, let B denote the event that the sum of the Xj′ variables besides Xj

is not too far from its mean,

B =

∑
j′ 6=j

Xj′ = (J − 1)± 2 log J
√
J

 .

Finally, let C denote the event that Xj (which has expected value one, but
unbounded support) is not just huge:

C = {Xj ≤ 2 log J} .

When A,B, and C occur, the complex quantity inside the expectations that
bound CSMF Accuracy above can itself be bounded by∣∣∣∣∣ Xj∑J

j′=1 Xj′
− Yj

N

∣∣∣∣∣ =

∣∣∣∣∣ Xj

(J − 1)± (2 log J
√
J + 2 log J)

− N/J ± 2 logN
√
N

N

∣∣∣∣∣
=

∣∣∣∣∣∣ Xj

J
(

1±
(

1
J + 2 log J√

J
+ 2 log J

J

)) − 1

J

(
1± 2J logN√

N

)∣∣∣∣∣∣
=

1

J
|Xj − 1|

(
1±O

(
log J√

J
+

J logN√
N

))
.
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We now decompose E[CSMF Accuracy] using indicator variables for A,B,
and C, and linearity of expectations:

E

[∣∣∣∣∣ Xj∑J
j′=1 Xj′

− Yj

N

∣∣∣∣∣
]

=E

[∣∣∣∣∣ Xj∑J
j′=1 Xj′

− Yj

N

∣∣∣∣∣ · 1[A ∧ B ∧ C]

]

+ E

[∣∣∣∣∣ Xj∑J
j′=1 Xj′

− Yj

N

∣∣∣∣∣ · 1[¬A ∨ ¬B ∨ ¬C]

]
.

The first term in this sum can be written using the bound above because
A,B, and C all occur:

E

[∣∣∣∣∣ Xj∑J
j′=1 Xj′

− Yj

N

∣∣∣∣∣ · 1[A ∧ B ∧ C]

]
=

1

J
E

[
|Xj − 1| · 1[A ∧ B ∧ C]

](
1±O

(
log J√

J
+

J logN√
N

))
.

The expectation can now be further simplified, because events A and B are
independent of Xj :

E

[
|Xj − 1| · 1[A ∧ B ∧ C]

]
= E

[
|Xj − 1| · 1[C]

]
Since the quantity inside the absolute value is at most 1, the second term in

the sum above can be bounded by the probability that the events A,B, and C
do not occur:

E

[∣∣∣∣∣ Xj∑J
j′=1 Xj′

− Yj

N

∣∣∣∣∣ · 1[¬A ∨ ¬B ∨ ¬C]

]
≤ E [1[¬A ∨ ¬B ∨ ¬C]]

≤ Pr[¬A] + Pr[¬B] + Pr[¬C].

The ingredients necessary to complete the proof are now the following:

Lemma 4.1. For Xj an exponentially distributed random variable with param-
eter 1, and event C = {Xj ≤ 2 log J},

E

[
|Xj − 1| · 1[C]

]
= 2/e +O(1/J).

Lemma 4.2. For Yj a binomially distributed random variable with parameters

n and 1/J and event A =
{
Yj = N/J ± 2 logN

√
N
}
, we have

Pr[¬A] = O(1/N).

Lemma 4.3. For {X1, X2, . . . , XJ} independent, exponentially distributed ran-
dom variables each with parameter 1, and event

B =

∑
j′ 6=j

Xj′ = (J − 1)± 2 log J
√
J

 ,
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we have
Pr[¬B] = O(1/ log J).

Lemma 4.4. For Xj an exponentially distributed random variable with param-
eter 1, and event C = {Xj ≤ 2 log J}, we have

Pr[¬C] = O(1/J).

Once these lemmas are established, substituting them into the bounds above
yields a mathematically rigorous analogue of the argument in section 3.

Proof of Lemma 4.1. This proof is a relatively straightforward calculus exercise:

E

[
|Xj − 1| · 1[C]

]
=

∫ ∞
x=0

|x− 1| · 1[x ≤ 2 log J ]e−xdx

=

∫ 1

x=0

(1− x)e−xdx +

∫ 2 log J

x=1

(x− 1)e−xdx

= xe−x
∣∣∣∣1
x=0

− xe−x
∣∣∣∣2 log J

x=1

= 1/e− 0− (2(log J)/J2 − 1/e)

= 2/e +O(1/J).

Proof of Lemma 4.2. This follows from a common formulation of Chernoff’s
inequality (e.g. Corollary 2.3 in [1]):

Pr[¬A] = Pr
[
|Yj −N/J | ≥ 2(logN)

√
N
]

≤ 2 exp
(
−4(logN)2J/3

)
= O(1/N),

provided N � J2.

Proof of Lemma 4.3. This can be shown via Chebyshev’s inequality (e.g. equa-
tion 1.2 in [1]):

Pr[¬B] = Pr

∣∣∣∣∣∣
∑
j′ 6=j

Xj′ − (J − 1)

∣∣∣∣∣∣ ≥ √J log J



≤
Var

[ ∑
j′ 6=j

Xj′

]
J(log J)2

=
J − 1

J(log J)2

= O(1/ log J).
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Proof of Lemma 4.4. Like the proof of Lemma 4.1, this can be obtained directly
from the distribution of Xj using calculus:

Pr[¬C] = Pr[Xj > 2 log J ]

=

∫ ∞
x=2 log J

e−xdx

= −e−x
∣∣∣∣∞
x=2 log J

= 0− (−e−2 log J)

= J−2

= O(1/J).
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